Dr. Stephan Schiffels

Dr. Stephan Schiffels

Abteilung für Archäogenetik
+49 3641 686-636

Forschungsinteressen

Mein Forschungsschwerpunkt liegt in der Analyse von Genom-Daten, sowohl aus archäologischen Funden als auch von heutigen Menschen. Dabei spielt auch die Entwicklung neuer Methoden zur statistischen Analyse dieser Daten eine wichtige Rolle, mit dem Ziel, Populationsgeschichte zu rekonstruieren. Diese umfasst Wanderungsbewegungen zwischen Regionen und Kontinenten, die Aufspaltung von Menschen-Gruppen in räumlich getrennte Subpopulationen, und Veränderungen in der Populationsgröße. Mit Hilfe dieser Erkenntnisse können wir schließlich Rückschlüsse auf Ereignisse der Menschheitsgeschichte ziehen.

Group Members

Forschungsprojekte (in English)

ERC Project MICROSCOPE
ERC Project MICROSCOPE banner

In recent years, archaeogenetic studies have yielded striking insights into European prehistory from ancient DNA. However, these studies focus on times prior and up to the Bronze Age, whereas more recent periods are still poorly covered. A key challenge with studying more recent time periods is the homogenisation of European populations since the late Neolithic, which exposes the limits of many existing analytical methods that try to detect population movements. To overcome these limits, in this proposal I will develop a genetic 'microscope', a new set of fine-scaled analytical methods based on rare genetic variation, which will allow us to analyse ancient genomic data to infer population structure with unprecedented detail. With this new toolbox, I will undertake the largest archaeogenetic investigation of the pre-Roman European Iron Age to date. A specific focus will be the ‘Celtic’ world, encompassing a core region spanning from parts of France into Slovakia, and which reached its maximum extent in the third century BC, spanning from the Iberian Peninsula to Anatolia. I will collaborate with a large number of partners from archaeology and anthropology, as well as genetic laboratories, to sample and analyse 600 skeletal remains from this region and time period. Using the new methods, I aim to investigate i) population structure during the early Iron Age in the 'Celtic' core region of Western and Central Europe; ii) the genetic evidence for the so-called 'Celtic migrations' from the third century BC, specifically by analysing samples from the Iberian Peninsula, Northern Italy, Hungary/Romania and the British isles; iii) how migration and population admixture are reflected at the community- and family level by ‘zooming in’ into selected archaeological sites to reconstruct family pedigrees. With new methodology, new reference data, and hundreds of ancient genomes from the pre-Roman Iron Age, this project will set new standards for archaeogenetic studies in Europe. [Image by Alonso de Mendoza, Wiki Commons]

Computational Methods for Genomic Analyses
Computational Methods banner

An important part of our work consists of developing new methods to analyse genomic data in order to statistically infer details about the underlying evolutionary dynamics. At the heart of this methodological work is the growing amount of data available in the field of population genomics. When in 2010 there were only a handful of high quality human genomes completely sequenced, nowadays it is thousands and growing. The information that this data carries about our past demography, population diversification, and adaptation processes is vast, in principle. However, extracting this information out of genomes requires novel methods that are both based on sound foundations of population genetic theory and efficient enough to cope with the Big Data that the field of Genetics has become. Furthermore, a relatively novel requirement of such methods is the integration of ancient DNA, which is becoming increasingly available. Important examples of methods that I have developed in recent years and which are further developed in my group include MSMC (published in Schiffels and Durbin, 2014) and rarecoal (published in Schiffels et al. 2016 and Flegontov et al. 2017]). We are also very active in developing bioinformatic tools and pipelines to help with processing sequencing data from ancient DNA. Examples for such tools include the sequenceTools package, the mergeAndClipFastq program, and various processing tools in the rarecoal-tools package.

Human History through genetics
human history banner

One important goal of genomic analysis is to reconstruct human history by mean of genetics. Up until a few years ago, this was an endeavour that was mostly based on modern genomic data that is became increasingly available. As a major game changer, we are now able to not only indirectly look into the past through our population genetic models based on modern data, but directly through analysing ancient DNA. This relatively new field of "Genetic history" has lead to new insights into human history from Genetics in recent years, including on migration movements between regions and continents, the separation of people into spatially separated subpopulations, as well as changes in population size. Concrete examples of our research covers continental peopling events, for example into America (see Raghavan et al. 2015 and Flegontov et al. 2017), Australia (see Malaspinas et al. 2016), the early Anglo-Saxon migrations into Britain (see Schiffels et al. 2016 and two blog posts here and here), or insights into population changes in Egypt within the last 2,000 years. Our work has also been picked up by the press, for example by the BBC or the Washington Post.

Population Genetic Theory
pop-gen theory banner

I received my PhD from the Institute for Theoretical Physics in Cologne, and my dissertation was in population genetic theory. Since then I have worked on a number of studies that explore evolutionary dynamics of adaptation, in particular in low recombining organisms or genomic regions. Examples for such studies include the effect of clonal interference on fixation probabilities of selected mutations (see Schiffels et al. 2011), how quantitative trait equilibria affect the the segregations of mutations at a genomic level (see Nourmohammad et al. 2012), and analyses of adaptive evolution under strong linkage in natural populations of Drosophila melanogaster (Schiffels et al. 2017).

Vita

Ich habe an der Universität Köln Physik studiert und in theoretischer Physik im Januar 2012 promoviert. Meine Doktorarbeit beschäftigte sich mit asexueller Adaptation und dem Einfluss von genetic linkage auf natürliche Selektion. Von 2012 bis 2015 war ich Postdoc bei Richard Durbin am Wellcome Trust Sanger Institute in Hinxton bei Cambridge, Großbritannien. Dort habe ich vor allem an Methoden zur Abschätzung historischer Populationsgrößen aus Genomsequenzen gearbeitet, und an alter menschlicher DNA von archäologischen Funden in England aus der Eisenzeit und von frühen angelsächsischen Grabfunden gearbeitet. Seit September 2015 leite ich die Arbeitsgruppe für Populationsgenetik am Max-Planck-Institut für Menschheitsgeschichte in Jena.

Selected Publications

For a complete list, see http://www.stephanschiffels.de/publications.html

Ancient genomes reveal complex patterns of population movement, interaction, and replacement in sub-Saharan Africa by Ke Wang, Steven Goldstein, Madeleine Bleasdale, Bernard Clist, Koen Bostoen, Paul Bakwa-Lufu, ..., Michael Petraglia, Emmanuel Ndiema, Fredrick K Manthi, Johannes Krause, Patrick Roberts, Nicole Boivin and Stephan Schiffels. Science Advances (2020)

MSMC and MSMC2: The Multiple Sequentially Markovian Coalescent by Stephan Schiffels and Ke Wang. in Statistical Population Genomics, Springer US (2020)

Tracking human population structure through time from whole genome sequences by Ke Wang, Iain Mathieson, Jared O'Connell and Stephan Schiffels. PLoS genetics (2020)

Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America by Pavel Flegontov, N Ezgi Altınışık, Piya Changmai, Nadin Rohland, Swapan Mallick, Nicole Adamski, ..., Elizaveta Veselovskaya, M Geoffrey Hayes, Dennis H O'Rourke, Johannes Krause, Ron Pinhasi, David Reich and Stephan Schiffels. Nature (2019)

Ancient Fennoscandian genomes reveal origin and spread of Siberian ancestry in Europe by Thiseas C Lamnidis, Kerttu Majander, Choongwon Jeong, Elina Salmela, Anna Wessman, Vyacheslav Moiseyev, ..., Antti Sajantila, Janet Kelso, Svante Pääbo, Päivi Onkamo, Wolfgang Haak, Johannes Krause and Stephan Schiffels. Nature Communications (2018)

Investigating Anglo-Saxon migration history with ancient and modern DNA by Stephan Schiffels and Duncan Sayer. in Migration and Integration from Prehistory to the Middle Ages, Tagungen Des Landesmuseums Für Vorgeschichte Halle (2017)

Inferring human population size and separation history from multiple genome sequences by Stephan Schiffels and Richard Durbin. Nature Genetics (2014)

Iron Age and Anglo-Saxon genomes from East England reveal British migration history by Stephan Schiffels, Wolfgang Haak, Pirita Paajanen, Bastien Llamas, Elizabeth Popescu, Louise Loe, ..., Rachel Clarke, Alice Lyons, Richard Mortimer, Duncan Sayer, Chris Tyler-Smith, Alan Cooper and Richard Durbin. Nature Communications (2016)

Emergent Neutrality in Adaptive Asexual Evolution by Stephan Schiffels, Gergely Szöllösi, Ville Mustonen and Michael Lässig. Genetics (2011)

Zur Redakteursansicht