Microbiome Sciences
Dr. Christina Warinner

The human body contains tens of trillions cells, of which more than half are microbial. Yet we know surprisingly little about the origins and evolution of these underexplored and mostly nameless microorganisms, collectively known as the human microbiome.

The Microbiome Sciences group studies the ecology, diversity, and evolution of human-associated microorganisms by combining investigations of archaeological and contemporary samples and using methods in based in genomics, proteomics, and metabolomics. Core research areas include the evolution of the hominid oral microbiome, recent ecological changes in the human gut microbiome, and the discovery and characterization of heirloom microbes in traditional fermented foods.

Primary projects:

Dairying and Dietary Adaptive Evolution in Prehistory
Origins of Dairying in Ancient Central Africa Project
Origins of Dairying in Ancient Central Asia Project
Origins of Dairying in Ancient Europe Project
Heirloom Microbes
Uncovering Dietary Practices through the Proteomic Analysis of Ceramics
Evolution and Ecology of the Human Gut Microbiome
Evolution and Ecology of the Human Oral Microbiome
Ancient Nepal Population Genetics

Molecular Palaeopathology
Dr. Kirsten Bos

Improved techniques in ancient DNA retrieval allow us to sequence sufficient DNA from preserved archaeological tissues to computationally reconstruct ancient pathogen genomes.

From this the molecular palaeopathology group tackles historical questions relating to the changing landscape of infectious disease over time, host-pathogen coevolution, and the biological consequences of European and New World contact. Currently our work focuses on historical Yersinia pestis pandemics and ancient tuberculosis.

Molecular Anthropology
Dr. Wolfgang Haak

The Molecular Anthropology group works at the interface of human genetics, medical sciences, archaeology, anthropology, and linguistics.

Our main aim is to investigate and evaluate ancient human genome-wide data in the light of data from neighboring disciplines to generate a detailed and comprehensive portrait of human prehistory over the last 20,000 years. Our portfolio ranges from global outlooks on population affinities, migrations and past demography to intra-group relationships, and also encompasses the interaction with and response to changing environmental factors, such as climate, diet and disease.

Computational Pathogenomics
Dr. Alexander Herbig

The focus of our research is on the development and application of computational tools in the field of pathogenomics.

The reconstruction of genomes of ancient bacterial pathogens is the basis for studying their evolution. This involves phylogenetic analyses for the elucidation of a pathogen's ancestry, and for the identification of functional variants potentially causing phenotypic differences. In this context we work on various human pathogens such as Yersinia pestis, Mycobacterium leprae or Mycobacterium tuberculosis in order to gain insights into the evolution of mechanisms of pathogenicity and host adaptation. In addition, studying coevolution of bacteria and humans is of major interest in particular with respect to microbes that evolved together with their human host for millennia, such as the stomach populating bacterium Helicobacter pylori.

Human Paleogenomics
Dr. Cosimo Posth

The research focus of our group is the study of ancient human DNA from multiple periods and geographical regions in order to uncover past genetic diversity not achievable with present-day DNA alone and to answer questions related to human history.

We apply molecular biology and computational techniques optimized for the retrieval of ancient DNA from human fossils to expand our understanding of the population dynamics that accompanied the dispersal of Neanderthals and modern humans throughout Eurasia. Moreover, we explore the genetic landscape of populations that first settled new geographical regions – such as South East Asia, the Southwest Pacific and the Americas – and the processes that shaped their genomic make-up through time.

Population Genetics
Dr. Stephan Schiffels

Our group analyses genetic data from ancient and modern populations to advance our understanding of human history.

Examples include the inference of historical population size changes within the last 200,000 years, exploring world-wide diversification of populations after the migration out of Africa within the last 50,000 years, and studying particularly recent migration events, such as the Anglo-Saxon migration period into England 1500 years ago. Particular focus is put on the development of mathematical models and new methods to push the limits of genetic inference towards the more recent past.

Go to Editor View